Genetics of blood group:Anatomy:Professor SD Gangane

Release Date:

Blood groups and genetic linkage

Red cell groups act as markers (inherited characteristics) for genes present on chromosomes, which are responsible for their expression. The site of a particular genetic system on a chromosome is called a locus. Each locus may be the site of several alleles (alternative genes). In an ordinary cell of the human body, there are 46 chromosomes arranged in 23 pairs, 22 pairs of which are autosomes (chromosomes other than sex chromosomes), with the remaining pair being the sex chromosomes, designated XX in females and XY in males. The loci of the blood group systems are on the autosomes, except for Xg, which is unique among the blood groups in being located on the X chromosome. Genes carried by the X chromosome are said to be sex-linked. Since the blood groups are inherited in a regular fashion, they can be used as genetic markers in family studies to investigate whether any two particular loci are sited on the same chromosome—i.e., are linked. The genes sited at loci on the same chromosome travel together from parent to child, and, if the loci are close together, the genes will rarely be separated.
Loci that are farther apart can be separated by recombination. This happens when material is exchanged between homologous chromosomes (pair of chromosomes) by crossing over during the process of cell division (mitosis). The reproductive cells contain half the number of chromosomes of the rest of the body; ova carry an X chromosome and spermatozoa an X or a Y. The characteristic number of 46 chromosomes is restored at fertilization. In a classical pedigree linkage study, all the members of a family are examined for a test character and for evidence of the nonindependent segregation of pairs of characters. The results must be assessed statistically to determine linkage. Individual chromosomes are identified by the banding patterns revealed by different staining techniques. Segments of chromosomes or chromosomes that are aberrant in number and morphology may be precisely identified. Other methods for localizing markers on chromosomes include somatic cell hybridization (cell culture with alignment of single strands of RNA and DNA) and use of DNA probes (strands of radiolabeled DNA). These methods are useful in classical linkage studies to locate blood group loci. The loci for many red cell groups have been found on chromosomes and in many cases have been further localized on a particular chromosome.In some of the blood group systems, the amount of antigen produced depends on the genetic constitution. The ABO blood group gene codes for a specific carbohydrate transferase enzyme that catalyzes the addition of specific sugars onto a precursor substance. As a new sugar is added, a new antigen is produced. Antigens in the MNSs blood system are the products of genes that control terminal amino acid sequence. The amount of antigen present may depend on the amount of gene product inherited or on the activity of the gene product (i.e., transferase). The red cells of a person whose genotype is MM show more M antigen than do MN red cells. In the case of ABO, the same mechanism may also play a role in antigen expression, but specific activity of the inherited transferase may be more important.
The amount of antigen produced can also be influenced by the position of the genes. Such effects within a genetic complex can be due to determinants on the same chromosome—they are then said to be cis—or to determinants on the opposite chromosome of a chromosome pair—trans.
In the Rh combination cdE/cde, more E antigen is produced than in the combination cDE/cde. This may be due to the suppressor effect of D on E. An example of suppression in the trans situation is that more C antigen is detectable on the red cells from CDe/cde donors than on those of CDe/cDE people. The inheritance of the Rh system probably depends on the existence of operator genes, which turn the activity of closely linked structural genes on or off.

Genetics of blood group:Anatomy:Professor SD Gangane

Title
Genetics of blood group:Anatomy:Professor SD Gangane
Copyright
Release Date

flashback