005 [論文紹介] コウモリは翼内の筋肉で飛膜のキャンバ(膨らみ)を制御しながら飛んでいる

Release Date:


キャンバの定義、英語版ウィキペディアの airfoil の記事がよさそう
翼型の中心線 (mean line): 前縁から後縁まで、上面(背面)と下面(腹面)を等分割(たとえば100等分)し、上下方向の各点を結ぶ。それぞれの中点を繋いだものが中心線 (mean camber line, mean line, or camber line)。間違って centerline と何度か言ってしまった…
キャンバ (camber): おおまかには、ある翼型(翼断面)について、その「反り具合」あるいは「凸凹具合」と思えばよい。具体的には「翼弦線 (chord line) から中心線までの垂線の長 さ」。あるいはもっとわかりやすく言うなら、まず翼弦線(前縁と後縁)を水平になるように翼型を回転して、その状態での「翼弦線(=水平線)から中心線までの高さ」でも同じこと。
ただし、単位付きの長さだと不便なので(巨大な翼型なら、わずかな反りでも巨大なキャンバになってしまう)、これを翼弦長で割ったものをキャンバとすることが多い。ただし、翼弦方向にどの位置を取るかは任意性があるため、複数の定義がある。代表的なのは「最大キャンバ」と「翼弦の特定位置でのキャンバ」。前者はそのまま、最大のキャンバで、この場合は翼弦のどの位置で最大キャンバが生じているかも記載することが望ましい。後者はたとえば「1/4翼弦長位置」や「1/2翼弦長位置」などがありえて、一般にはこの位置のキャンバは最大ではないが、変動する場合の定点観測として用いる。
今回の論文: Bats actively modulate membrane compliance to control camber and reduce drag Open Access なので誰でも読める。直訳すると「コウモリは能動的に飛膜の柔軟性を変動させてキャンバを制御し抗力を低減している」くらいか。Inside JEB という紹介記事も出てるけど、論文自体がコンパクトにまとまっているので読む必要はあんまりないかも…
3羽のオスの成体の Jamaican fruit bats… ジャマイカフルーツコウモリ?を使用。体重50グラム程度。Brown大学の風洞で飛行させた。まず、無風状態と 5 m/s の向かい風の中で飛ばしたあと、ボツリヌストキシンA (BtxA) で翼面内の一部の筋肉をマヒさせて、再度同じ2つの風速で飛行させた。いずれにおいても、通常の風洞実験と異なり、コウモリは空間的に止まっていなくて、前進していったようだ。結果を見ると、対気速度(相対風速)は無風時に 3 m/s 程度、向かい風ありで 6-7 m/s 程度となっている。
高速度カメラ6台を800 fps (frames per second) で、翼の上面が見えるように撮影。Phanto Miro 340 を4台と Photron FASTCAM SA4 を2台使っている。他社のカメラを混ぜると同期などで苦労するので大変だったろうなぁ感がにじむ。
Fig. 1A: 翼をザックリと2つにわけている。手首関節より付け根側を armwing・手首関節より先が handwing と呼んでいる。これは鳥でも同じ。翼の3ヶ所(ひじ・手首・小指のMP関節)につけたマーカ(黄色の円…実際には白い塗料)を撮影して運動計測。また紫の線たちは後に BtxA でマヒさせる plagiopatagiales という armwing の筋肉の位置。
Fig. 1B: 同時に、Agisoft PhotoScan Pro(現 MetaShape)で photogrammetry により翼上面を点群 (point cloud) に3次元再構築している。そのうち、羽ばたきの打ち下ろし中期 (mid-downstroke) において、小指の骨(=ほぼ翼弦方向)に平行な線を含むような垂直断面を2ヶ所、armwingとhandwingにおいて1ヶ所ずつ選び、それらの位置での翼型を抽出。これが緑の曲線。
Fig. 1C: それぞれの翼型について、最大キャンバを計算。翼弦長で割って、翼弦長に対する%で表示している。同時に、迎え角の定義も示されている。++とSSは骨の位置らしい。
Fig. 1D: 飛行速度(相対風速)に応じたキャンバの変化を示すプロット。ざっくり低速(右)ほどキャンバが大きい。まず i と ii は armwing と handwing. 縦軸は最大キャンバ。横軸は相対風速の速度(上の軸)あるいは速度から計算した動圧、の逆数(下の軸)。青の円(点)は control で、赤の円は BtxA で筋肉を麻痺させた場合。注意すべきは横軸はなぜか普通と反転してあり、右に行くほど「遅い」ということ。なので、青の左が高速(向かい風あり)・右が低速(無風)。赤は高速のみ示しており、これは低速(無風)では飛べなくなってしまったから。また赤は 1 m/s ほど遅くなっている。そのため解析上は「高速の青から高速の赤への変化」を直接計算するのではなく、まずは control(青)の2群を使って「速度に対するキャンバや運動パラメタの変化を示す線形モデル」を作り、その直線上に BtxA(赤)が乗るのか、ずれるのか、というのを見ている。Fig. 2: 横軸と青丸・赤丸は Fig. 1D と同様。縦軸は変わっているので以下に示す。
Fig. 2A: 縦軸は羽ばたき振幅 (wingbeat amplitude) で単位は度 (degrees). BtxA では振幅が増えている。
Fig. 2B: 縦軸は打ち下ろし角度 (downstroke angle) で単位は度。胴体座標系で考えるなら、打ち下ろしだけ使った羽ばたき面角度 (stroke plane angle, SPA) ということで、0度なら水平・90度なら垂直に羽ばたいている、ということ。基本的にはホバリングで0度に近く、高速だと90度に近くなっていく。BtxA (赤丸)ではこれも増えている、つまり、羽ばたき面がより垂直に近くなっている。
Fig. 2C: 左右2つのパネルがあり、縦軸は迎え角 (angle of attack, AOA) で単位は度。左パネルは armwing で右パネルは handwing. これは BtxA しても変わってない。要するに前縁・後縁の位置はマヒの影響をうけておらず、キャンバだけをうまいことマヒで変えられたんだろうなぁ…うまいなぁ…
Fig. 3: 打ち下ろし中期における armwing の翼型(中心線)。比較のために、縦軸だけでなく横軸も翼弦長で割って無次元化してある。A は低速 control, B は高速 control, C は botox 処理時で、細い線が各データ。D はこれらの平均(太線)とSEM(影)。比較すべきは、fast control(グレー)に対して BtxA(赤)がどう変化したかで、特に前縁寄りの位置で上に凸のキャンバが増していて、slow control(黒)に近づいていることがわかる。逆に言うと、マヒしていない通常時、高速では筋肉を制御してキャンバを減らして飛んでいる、ということが推測される。
結果をまとめると、マヒによって 1) 飛行速度が低下したまたは無風だと飛べなくなった 2) armwing のキャンバが増大した→おそらく抗力増大してる 3) 羽ばたき運動が変わった→抗力増大に対抗して推力を増やす方向性(振幅増・SPA増)なぜか羽ばたき周波数とAoAは増やしてない
低速で飛べないのはなぜ?キャンバ増えたほうがいいのでは?→パワが足りないのかも
進化的な意義は?→armwing 使えないだけで飛べなくなるくらいなので翼面内の筋肉は進化において重要だろう。コウモリだけでなく飛翔性哺乳類全体でそうかも。

005 [論文紹介] コウモリは翼内の筋肉で飛膜のキャンバ(膨らみ)を制御しながら飛んでいる

Title
mazpod
Copyright
Release Date

flashback